
Name_________________________________

EE2700 Final Exam (Spring 2012). 6 Pages. Open book. Open Notes. Closed Internet.
Cheating will not be tolerated and will result in grade of 0 for this exam.

1. (4 pts) (a) Convert –107 to an 8-bit 2’s complement number. (b) Represent that

number in (unsigned) hexidecimal. Show your work.
 (a) ________________ (b) ___________________

2. (4 pts) (a) Add the following 8-bit 2’s complement numbers. Show your work. (b)

Convert both addends and the sum to decimal. (c) State whether or not overflow
occurred.

 11010111
 +01100101

3. (6 pts) Loop and give the simplest SOP expression for each of the following maps:
(a)

AB

CD 00 01 11 10

00 1 0 0 1

01 0 X 1 1

11 0 0 1 X

10 1 0 0 1

F = __________________________

 (b)
AB

CD 00 01 11 10

00 X Ē Ē+xE 0

01 xĒ 0 xĒ xĒ+E

11 0 X E 1

10 xE xĒ 1 xE

F = _________________________

4. (3 pts) Name the property or theorem that justifies each of the following logical

equations:
(a) XYXXY _________________________
(b) XYYX _________________________
(c) ZYXZYX _________________________

5. (4 pts) Simplify the following expressions using logical identities, properties and/or
theorems:
 (a) DCBAAC = ___________________________
 (b))()(DACBADACBA = ___________________________

6. (4 pts) Analyze the circuit below. Simplify to a sum of products expression.

 F = ___________________

7. (2 pts) If NAND gates have a propagation delay of 5ns and OR gates have a

propagation delay of 7 ns, what is the total propagation delay for the circuit in
problem 6?

 ns

8. (5 pts) Complete the timing diagram below for Q1 and Q0.

9. (5 pts) List (in order) the 5 design steps we discussed in class.
 1. ___
 2. ___
 3. ___
 4. ___
 5. ___

10. (2 pts) For a flip-flop, the time that the data must be stable before the rising edge of the
clock is called:
(a) Propagation delay.
(b) Hold time.
(c) Setup time.
(d) Party time.

11. The state machine below represents the controller for a 15¢ chewing gum vending
machine that accepts nickels and dimes. Whenever 15¢ or more is inserted, the VEND
output causes the gum to be dispensed. If 20¢ is inserted, the CHANGE output causes
a nickel to be returned. Note that inputs N and D pulse one clock cycle each time a
nickel or dime is inserted, respectively.

 (a) (8 pts) Complete the present state/next state/ouput table below.

Present State Inputs Next State Outputs
Q1 Q0 N D NS1 NS0 VEND CHANGE
0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

(b) (6 pts) Use the table from (a) to draw Karnaugh maps for “next state” bits NS0 and
NS1.

(c) (6 pts) Use the original state diagram to draw VEMs for VEND and CHANGE.

(d) (6 pts) Using your results from (b) and (c), write the logic equations for NS1, VEND
and CHANGE. (Note: The equation for NS0 is given later, so do not find it.)

(e) (5 pts) The logic equation for next state bit, NS0, is:
DNQQDNQNS 0100 .

 Assume DNNQQ ,,,, 11 and D (asserted high) are all available. Design a circuit that
generates 0Q and 0Q using logic gates and a D flip-flop. Use only NAND or NOR
gates (no inverters, and you may not use a gate as an inverter).

(e) (3 pts) Using your results from (d) and (e), find the minimum clock period (the time
between rising edges of the clock) for this state machine. Assume NAND and NOR
gates have the following propagation delays: 2-input: 5ns, 3-input: 6ns and 4-input:
7ns. Also assume a clock-to-Q propagation delay of 10ns and a setup time of 3ns.
For simplicity, neglect propagation delay through inverters.

(f) (15 pts) Complete the VHDL module for this state machine, below, without using the
equations you developed in part (d). The inputs nickel and dime are asynchronous and
may be asserted for multiple clock cycles, so you will need to use the single-pulse
technique we discussed in class to generate synchronous signals N and D that are
active for just one clock cycle. Assume the outputs are asserted low. Use the back of
this page if you need more room.

 entity gum_vend is
 port (clk, reset_L, nickel, dime: in std_logic; vend_L, change_L: out std_logic);
end gum_vend;

architecture behavior of gum_vend is
 type state_type is (home, have_5_cents, have_10_cents); -- State names

end behavior;

12. (5 pts) Draw a state diagram for a Moore state machine that detects the sequence 0110,
where the final 0 in one sequence may serve as the first zero in the next. (e.g. your
state machine should detect 0110 twice in the sequence 0110110.) Hint: you will need
5 states.

13. (2 pts) If the state machine in problem 12 uses the minimum number of bits to encode
the state, how many flip-flops will be needed?

14. (2 pts) If the state machine in problem 12 uses a “one-hot” state assignment, how
many flip-flops will be needed?

15. (3 pts) Why do tools like ISE favor using one-hot state assignments?

Extra Credit (3 pts) The processor we designed in this class cannot handle arrays or

pointers. To do that, we would need indirect addressing, in which the instruction
refers to a memory location that contains the address of the data instead of the data
itself.

Draw the extra states for the controller you did in Project 3 to implement the
instruction load indirect (i.e. the second byte of the instruction names a memory
location that in turn names the memory location to load).

